Immune checkpoint molecules

- Activating receptors: OX40, 4-1BB(CD137), ICOS etc.
- Inhibitory receptors: CTLA-4, PD-1, TIM-3, LAG-3 etc.

Contents

- Overview of cancer immunity
- Rationales of immune checkpoint inhibition for HNC
 - High mutation burden in HNC
 - PD-1/PD-L1 expression in HNC
- Clinical trials of immune checkpoint inhibitors for HNC
- Conclusions

Current Status of Immune Check Point Inhibitors for Head and Neck Cancer

Department of medical oncology and hematology,
Kobe University Hospital, Japan
Naomi Kiyota

Contents

- Overview of cancer immunity
- Rationales of immune checkpoint inhibition for HNC
- High mutation burden in HNC
- PD-1/PD-L1 expression in HNC
- Conclusions

Cycle of cancer immunity

- Priming and activation
- Trafficking of T cells
- Infiltration of T cells
- Recognition of tumor
- Killing of cancer cells
- Release of cancer cell Ag

Immune checkpoint molecules

- Activating receptors: OX40, 4-1BB(CD137), ICOS etc.
- Inhibitory receptors: CTLA-4, PD-1, TIM-3, LAG-3 etc.
Inhibitory immune checkpoint receptors

- CTLA-4: central inhibitory receptor for T-cell activation
- PD-1: binding PD-L1 on tumor cells to inhibit T-cell activation

Contents

- Overview of cancer immunity
- Rationales of immune checkpoint inhibition for HNC
 - High mutation burden in HNC
 - PD-1/PD-L1 expression in HNC
- Clinical trials of immune checkpoint inhibitors for HNC
- Conclusions

Tumor mutation burden

Malignant melanoma
- Treatment: anti-CTLA-4 Ab, Ipilimumab or Tremelimumab
- Mutation burden correlated with efficacy of anti-CTLA-4 Ab

Rizvi et al. SCIENCE, 2015

Snyder et al. NEJM, 2015

Inhibitory immune checkpoint receptors

- CTLA-4: central inhibitory receptor for T-cell activation
- PD-1: binding PD-L1 on tumor cells to inhibit T-cell activation

Contents

- Overview of cancer immunity
- Rationales of immune checkpoint inhibition for HNC
 - High mutation burden in HNC
 - PD-1/PD-L1 expression in HNC
- Clinical trials of immune checkpoint inhibitors for HNC
- Conclusions

Tumor mutation burden

- Malignant melanoma
- Treatment: anti-CTLA-4 Ab, Ipilimumab or Tremelimumab
- Mutation burden correlated with efficacy of anti-CTLA-4 Ab

Snyder et al. NEJM, 2015

Tumor mutation burden

Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma

Snyder et al. NEJM, 2015

Contents

- Overview of cancer immunity
- Rationales of immune checkpoint inhibition for HNC
 - High mutation burden in HNC
 - PD-1/PD-L1 expression in HNC
- Clinical trials of immune checkpoint inhibitors for HNC
- Conclusions

Tumor mutation burden

Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer

Snyder et al. NEJM, 2015
Tumor mutation burden

- Non-small cell lung cancer (NSCLC)
- Treatment: anti-PD-1 Ab, Pembrolizumab
- Mutation burden correlated with efficacy of anti-PD-1 Ab

HPV and PD-L1 expression

- More intense PD-L1 expression in HPV +ve HNC

HNC is an immunosuppressive disease

- Lower absolute lymphocyte counts
- Impaired NK-cell activity
- Poor antigen-presenting function
- Impaired TILs
- Increased activity of Treg
- Development of T cell tolerance to persistent viral infection

HPV positive OPC and PD-L1

- Increase in IFN-γ and CD8 mRNA in PD-L1+ cancers
- May reflect the down-regulation of anti-tumor immunity

Lyford Pike et al. Cancer Res. 73(6); 1733–41.

Strome et al. Cancer Res; 76(5); 1031–43, 2015

Ukpo et al. OP 181 46% 49% 34%

Kim et al. OP 133 68% 71% 61%

Lyford-pike et al. OP 27 59% 70% 29%

Badoual et al. OC, OP, HP 64 52% 63% 40%

Concha-Benavenete et al. N/A 134 60% 70% 43%

Zhang et al. NP 139 95% --

Hsu et al. NP 25 100% --

Tumor mutation burden

- Correlate with sensitivity of immune check point inhibition
- High mutation burden: Melanoma, NSCLC, CRC, HNC

HNC and PD-L1 expression

- Higher expression of PD-L1 in virus related HNC

<table>
<thead>
<tr>
<th>Author</th>
<th>Site(s)</th>
<th>T</th>
<th>Total</th>
<th>HPV+</th>
<th>HPV-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strome et al.</td>
<td>OC, HP, PNS</td>
<td>24</td>
<td>66%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lin et al.</td>
<td>OC</td>
<td>365</td>
<td>44%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ulogu et al.</td>
<td>OF</td>
<td>131</td>
<td>45%</td>
<td>46%</td>
<td>34%</td>
</tr>
<tr>
<td>Kim et al.</td>
<td>OP</td>
<td>133</td>
<td>68%</td>
<td>71%</td>
<td>61%</td>
</tr>
<tr>
<td>Lyford-pike et al</td>
<td>OP</td>
<td>27</td>
<td>56%</td>
<td>70%</td>
<td>29%</td>
</tr>
<tr>
<td>Bockstal et al.</td>
<td>OC, OP, HP</td>
<td>64</td>
<td>52%</td>
<td>62%</td>
<td>4%</td>
</tr>
<tr>
<td>Concha-Benavenete et al.</td>
<td>N/A</td>
<td>134</td>
<td>60%</td>
<td>70%</td>
<td>43%</td>
</tr>
<tr>
<td>Zhang et al.</td>
<td>NP</td>
<td>138</td>
<td>55%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hsu et al.</td>
<td>NP</td>
<td>25</td>
<td>70%</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

DCB: durable clinical benefit (PR or SD>6months)
NDB: no durable clinical benefit

Tumor mutation burden

- Correlate with sensitivity of immune check point inhibition
- High mutation burden: Melanoma, NSCLC, CRC, HNC

Tumor mutation burden

- Correlate with sensitivity of immune check point inhibition
- High mutation burden: Melanoma, NSCLC, CRC, HNC

HNC and PD-L1 expression

- Higher expression of PD-L1 in virus related HNC

<table>
<thead>
<tr>
<th>Author</th>
<th>Site(s)</th>
<th>T</th>
<th>Total</th>
<th>HPV+</th>
<th>HPV-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strome et al.</td>
<td>OC, HP, PNS</td>
<td>24</td>
<td>66%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lin et al.</td>
<td>OC</td>
<td>365</td>
<td>44%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ulogu et al.</td>
<td>OF</td>
<td>131</td>
<td>45%</td>
<td>46%</td>
<td>34%</td>
</tr>
<tr>
<td>Kim et al.</td>
<td>OP</td>
<td>133</td>
<td>68%</td>
<td>71%</td>
<td>61%</td>
</tr>
<tr>
<td>Lyford-pike et al</td>
<td>OP</td>
<td>27</td>
<td>56%</td>
<td>70%</td>
<td>29%</td>
</tr>
<tr>
<td>Bockstal et al.</td>
<td>OC, OP, HP</td>
<td>64</td>
<td>52%</td>
<td>62%</td>
<td>4%</td>
</tr>
<tr>
<td>Concha-Benavenete et al.</td>
<td>N/A</td>
<td>134</td>
<td>60%</td>
<td>70%</td>
<td>43%</td>
</tr>
<tr>
<td>Zhang et al.</td>
<td>NP</td>
<td>138</td>
<td>55%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hsu et al.</td>
<td>NP</td>
<td>25</td>
<td>70%</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

DCB: durable clinical benefit (PR or SD>6months)
NDB: no durable clinical benefit

Tumor mutation burden

- Correlate with sensitivity of immune check point inhibition
- High mutation burden: Melanoma, NSCLC, CRC, HNC

Tumor mutation burden

- Correlate with sensitivity of immune check point inhibition
- High mutation burden: Melanoma, NSCLC, CRC, HNC
Nasopharyngeal cancer and PD-L1

- PD-L1 expression: 95% of NPC
- Higher level of PD-L1 expression correlated with worse prognosis

Contents

- Overview of cancer immunity
- Rationales of immune check point inhibition for HNC
 - High mutation burden in HNC
 - PD-1/PD-L1 expression in HNC
- Clinical trials of immune check point inhibitors for HNC
- Conclusions

PD-1/PD-L1 inhibitors on development

<table>
<thead>
<tr>
<th>Target</th>
<th>Agents</th>
<th>company</th>
<th>Isotype and characteristics</th>
<th>phase</th>
<th>HNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD-1</td>
<td>Nivolumab</td>
<td>MedImmune/AZ</td>
<td>humanized IgG4</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pembrolizumab</td>
<td>MSD</td>
<td>humanized IgG4</td>
<td>I-III</td>
<td>on going</td>
</tr>
<tr>
<td>PD-1</td>
<td>PDR-001</td>
<td>Novartis</td>
<td>humanized IgG4</td>
<td>II</td>
<td>on going</td>
</tr>
<tr>
<td>PD-L1</td>
<td>MEDI4736 (Durvalumab)</td>
<td>MedImmune/AZ</td>
<td>Fc-modified humanized IgG1</td>
<td>I-III</td>
<td>on going</td>
</tr>
<tr>
<td></td>
<td>MPDL3280A (Avelumab)</td>
<td>Genentech/Roche</td>
<td>Fc-modified humanized IgG1</td>
<td>II</td>
<td></td>
</tr>
</tbody>
</table>

Clinical trials.gov

Cancer Cell 27, April 13, 2015
Randomized, global, phase 3 trial of the efficacy and safety of nivolumab versus investigator’s choice in patients with R/M SCCHN:

- Prior cetuximab treatment
- No active CNS metastases
- Documentation of p16 to determine
- Progression on or within 6 months of
- R/M SCCHN of the oral cavity, pharynx, or larynx
- HPV status

HPV status

<table>
<thead>
<tr>
<th>HPV Status</th>
<th>Nivolumab (n = 240)</th>
<th>Investigator’s Choice (IC) (n = 236)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV+</td>
<td>120 (50.0%)</td>
<td>116 (49.5%)</td>
</tr>
<tr>
<td>HPV-</td>
<td>120 (50.0%)</td>
<td>120 (50.5%)</td>
</tr>
</tbody>
</table>

Summary of Anti-PD-1/PD-L1 for R/M HNSCC

- **CheckMate 141**
 - Key Criteria:
 - PD-L1-
 - HPV-/p16-
 - Key Outcomes:
 - ORR
 - mOS
 - DOR
 - Treatment:
 - Nivolumab
 - 3 mg/kg IV q2w
 - Investigator’s Choice
 - Key Statistics:
 - ORR: 30.2% vs. 10.0%
 - mOS: NR vs. 12.6 months
 - DOR: 5.2 months vs. 2.1 months

- **KEYNOTE-012**
 - Key Criteria:
 - PD-L1+
 - HPV+/p16+
 - Key Outcomes:
 - ORR
 - mOS
 - DOR
 - Treatment:
 - Nivolumab
 - 10 mg/kg Q2W
 - Investigator’s Choice
 - Key Statistics:
 - ORR: 40.4% vs. 29.9%
 - mOS: NR vs. 12.6 months
 - DOR: 2.1 months vs. 2.1 months

- **KEYNOTE-055**
 - Key Criteria:
 - PD-L1-
 - HPV-/p16-
 - Key Outcomes:
 - ORR
 - mOS
 - DOR
 - Treatment:
 - Nivolumab
 - 200 mg Q3W
 - Investigator’s Choice
 - Key Statistics:
 - ORR: 16.6% vs. 8.6%
 - mOS: NR vs. 28.5–43.4 months
 - DOR: 2.1 months vs. 2.1 months

- **CheckMate 141 vs. KEYNOTE-055**
 - Key Comparison:
 - ORR: 20.8% vs. 16.6%
 - mOS: NR vs. 26.8 months
 - DOR: 5.2 months vs. 2.1 months

- **CheckMate 141 Study Design**
 - Randomized, global, phase 3 trial
 - Key Eligibility Criteria:
 - R/M SCCHN
 - No active CNS metastases
 - Documentation of p16 to determine
 - Progression on or within 6 months of
 - R/M SCCHN of the oral cavity, pharynx, or larynx
 - HPV status
 - Key Assignments:
 - Nivolumab
 - 3 mg/kg IV q2w
 - Investigator’s Choice
 - Key Sample Size:
 - Planned sample size of 360 patients
 - Interim analysis after 195 events
 - 90% power for a hazard ratio of nivolumab to investigator’s choice
 - Total of 278 deaths required for analysis
 - KeyEndpoints:
 - ORR
 - mOS
 - DOR
 - KeyStatistical Plan:
 - Two-sided test procedure with one interim analysis
 - 2:1 randomization
 - Key Results:
 - ORR: 30.2% vs. 10.0%
 - mOS: NR vs. 12.6 months
 - DOR: 5.2 months vs. 2.1 months

- **CheckMate 141**
 - Key Differences:
 - ORR: 30.2% vs. 10.0%
 - mOS: NR vs. 12.6 months
 - DOR: 5.2 months vs. 2.1 months
 - Key Findings:
 - Nivolumab showed significant improvement of OS
 - Key Conclusions:
 - Nivolumab is a promising treatment for R/M SCCHN

Adverse Events of Special Interest

- **Around 50% of pts received 2 or more lines of chemotherapy for R/M HNSCC:** CheckMate-141 Nivolumab vs. Investigator’s Choice (IC)

CheckMate 141 Study Design

- **Primary endpoint:**
 - OS
 - Improvement in OS
 - HR = 0.667
 - Two-sided test procedure with one interim analysis
 - Planned sample size of 360 patients
 - Interim analysis after 195 (70%) events
 - 90% power for a hazard ratio of nivolumab to investigator’s choice
 - Total of 278 deaths required to ensure
 - Planned sample size of 360 patients
 - Interim analysis after 195 (70%) events
 - 90% power for a hazard ratio of nivolumab to investigator’s choice
 - Total of 278 deaths required to ensure

- **Any Grade**
 - Deaths, n 2 0 0 1 0
 - Deaths, % 0 0 0 1 0

- **Grade 3–4**
 - Deaths, n 2 0 0 1 0
 - Deaths, % 0 0 0 1 0

Summary of Anti-PD-1/PD-L1 for R/M HNSCC

- **ORR, %**
 - CheckMate 141: 30.2%
 - KEYNOTE-055: 16.6%

- **mOS, mos**
 - CheckMate 141: NR
 - KEYNOTE-055: 28.5–43.4 months

- **Deaths, n**
 - CheckMate 141: 28
 - KEYNOTE-055: 121
Immune related adverse events (irAEs)

- Skin toxicity
- Gastrointestinal toxicity
- Diabetes
- IBD-like colitis
- Pancreatitis
- Liver toxicity
- Endocrine disorder
- Hypothyroidism
- Adrenal insufficiency
- Hypophysitis
- Interstitial lung disease
- Neurological toxicity
- Encephalopathy
- Guillain-Barré syndrome
- Myasthenia Gravis

Treatment algorithm of irAEs

 Grade 1: symptomatic treatment, continue IO

 Grade 2:

- Symptomatic treatment
- Hold IO until recovery from irAEs
- In case of prolonged or recurrent Grade 2 irAEs

 - Treat as Grade 3 irAEs

 Grade 3 or more:

- Discontinuation
- PSL 1-2(-4) mg/kg

 - In PSL refractory case, consider additional treatment

 - Infliximab, MMF, IVlg

Conclusions

- Nivolumab exhibited survival benefit in platinum refractory R/M HNSCC for the first time
- Optimal biomarker remains to be defined
- Further development of immune check point inhibitors for
 - 1st line R/M HNSCC
 - Locally advanced HNSCC
 - Combination with radiation therapy
 - Virus related HNC: OPC and NPC
 - Combination with other immune check point inhibitors
- Proper management of irAEs is crucial for IO therapy

<table>
<thead>
<tr>
<th>irAEs</th>
<th>Nivolumab 10 mg/kg, q2wks</th>
<th>Pembrolizumab 10 mg/kg, q3wks</th>
<th>Clinical course of irAEs: Ipilimumab 10 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin toxicity</td>
<td>14 0 14 0 25 0.4</td>
<td>14 0 14 0 25 0.4</td>
<td>47-88 0-4</td>
</tr>
<tr>
<td>Rash</td>
<td>15 0 13 0 15 0.8</td>
<td>15 0 13 0 15 0.8</td>
<td>28-80 0-4</td>
</tr>
<tr>
<td>Gastrointestinal toxicity</td>
<td>19 2 44 9 33 6</td>
<td>21 1 45 8 21 0.6</td>
<td>31-46 8-23 3</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>1 0.6 12 8 12 9</td>
<td>2 0.4 14 8 21 9</td>
<td>17 2 4 2.5 13 7</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>9 0.4 12 8 12 9</td>
<td>0.4 0.4 0.7 0.4 0.7 1.8</td>
<td>9 0.4 1.4 0.4 0.4 2.3</td>
</tr>
<tr>
<td>Colitis</td>
<td>0.4 0.4 0.7 0.4 0.7 1.8</td>
<td>17 2.5 14 1 17 1.8</td>
<td>13 2 0.4 0.4 0.4 1.2</td>
</tr>
<tr>
<td>Hypophysitis</td>
<td>0.4 0.4 0.7 0.4 0.7 1.8</td>
<td>0.4 0.4 0.7 0.4 0.7 1.8</td>
<td>13 2 0.4 0.4 0.4 1.2</td>
</tr>
<tr>
<td>Type 1 diabetes</td>
<td>0.4 0.4 0.7 0.4 0.7 1.8</td>
<td>0.4 0.4 0.7 0.4 0.7 1.8</td>
<td>13 2 0.4 0.4 0.4 1.2</td>
</tr>
<tr>
<td>Fatigue</td>
<td>0.4 0.4 0.7 0.4 0.7 1.8</td>
<td>0.4 0.4 0.7 0.4 0.7 1.8</td>
<td>13 2 0.4 0.4 0.4 1.2</td>
</tr>
<tr>
<td>ALT increased</td>
<td>17 2 44 9 33 6</td>
<td>21 1 45 8 21 9</td>
<td>3-9 3-7 1-5</td>
</tr>
<tr>
<td>Pulmonary toxicity</td>
<td>0.4 0.4 0.7 0.4 0.7 1.8</td>
<td>0.4 0.4 0.7 0.4 0.7 1.8</td>
<td>3-9 3-7 1-5</td>
</tr>
<tr>
<td>Discontinuation due to irAEs</td>
<td>3-9 3-7 1-5</td>
<td>3-9 3-7 1-5</td>
<td>3-9 3-7 1-5</td>
</tr>
</tbody>
</table>

- Clinical course of irAEs: Ipilimumab 10 mg/kg

<table>
<thead>
<tr>
<th>irAEs</th>
<th>Any Grade (%)</th>
<th>Grade 3/4 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin toxicity</td>
<td>47-88 0-4</td>
<td></td>
</tr>
<tr>
<td>Rash</td>
<td>28-80 0-4</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal toxicity</td>
<td>31-46 8-23 3</td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>17 2.5 14 1 17 1.8</td>
<td></td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>9 0.4 12 8 12 9</td>
<td></td>
</tr>
<tr>
<td>Colitis</td>
<td>0.4 0.4 0.7 0.4 0.7 1.8</td>
<td></td>
</tr>
<tr>
<td>Hypophysitis</td>
<td>0.4 0.4 0.7 0.4 0.7 1.8</td>
<td></td>
</tr>
<tr>
<td>Type 1 diabetes</td>
<td>0.4 0.4 0.7 0.4 0.7 1.8</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>0.4 0.4 0.7 0.4 0.7 1.8</td>
<td></td>
</tr>
<tr>
<td>ALT increased</td>
<td>3-9 3-7 1-5</td>
<td></td>
</tr>
<tr>
<td>Pulmonary toxicity</td>
<td>3-9 3-7 1-5</td>
<td></td>
</tr>
<tr>
<td>Discontinuation due to irAEs</td>
<td>3-9 3-7 1-5</td>
<td></td>
</tr>
</tbody>
</table>